
I r= K CP
1

I
I

I
I

I DTICS ELECTE

I JAN 0 91991
DEPARTMENT OF THE AIR FORCE E U

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

N Wright-Patterson Air Force Base, Ohio

ApprovW .or 91 . 3 08



AFIT/GA/ENY/90D- 14

A NUMERICAL INVESTIGATION OF THE SERIES
REVERSION/INVERSION AND SERIES REVERSION

OF LAMBERT'S TIME FUNCTION

THESIS

Michael P. Ward
Captain, USAF

AFIT/GA/ENY/90D- 14

Approved for public release; distribution unlimited



I

AFIT/GA/ENY/90D- 14

A NUMERICAL INVESTIGATION OF THE SERIES

REVERSION/INVERSION AND SERIES REVERSION

OF LAMBERT'S TIME FUNCTION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Astronautical Engineering

Acoession'°For

NTIS GRA&I
|DTIC TAB

Michael P. Ward, B.S. Unannounced I]

Captain, USA F _ ___, __ _ _- -_ _

By
Distribut ion/

December, 1990 Availability Codes

Avali and/jorIDist Special

IApproved for public release; distribution unlimited

I



Acknowledgments

I would like to thank my advisor, Capt Rodney Bain, for all of his help and expert

I- guidance. A special thanks are due to my wife, Laura for her patience and understand-

ing during this degree program and to my son, Christopher, for providing the necessary

"baby breaks".

I Michael P. Ward

I
I

I

wI

I
I
I
I
I

I
I
I



Table of Contents

Page

Acknowledgments ....................................................................................................... ii

List of Figures ............................................................................................................ iv

List of Tables .............................................................................................................. viii

List of Symbols ........................................................................................................... ix

A b strac t ....................................................................................................................... x

I. Introduction ....................................................................................................... I

II. Analytical Development ................................................................................... 5

M easuring the Accuracy ........................................................................ 5
Calculating the RI Series Coefficients .................................................... 5
Calculating the R Series Coefficients .................................................... 8
M atrix M ethod ......................................................................................... I1
Approximating the R Series Coefficients ............................................. 12
Continued Fraction Expansion ................................................................ 12

III. Numerical Investigation .................................................................................... 15

Accuracy of RI and R Series ................................................................. 15
M ethod A: R Series Coefficients as a Function of n ......................... 21
Method B: R Series Coefficients as a Function of Transfer Angle .... 32
Continued Fraction Expansions ............................................................. 37
Comparison of M ethods .......................................................................... 44

IV. Conclusions ...................................................................................................... 52

V. Recommendations for Further Study ............................................................ . 53

Appendix A. Time Residual vs. T Plots for RI Series .......................................... 54

Appendix B. Time Residual vs. T Plots for R Series ............................................ 57

Appendix C. Time Residual vs. T Plots for M ethod A ......................................... 60

Appendix D. Plots of a, vs. Transfer Angle .......................................................... 63

Appendix E. Time Residual vs. T Plots for M ethod B .......................................... 66

Appendix F. Time Residual vs. T Plots for C. F. Expansion of RI Series .......... 69

Appendix G. Time Residual vs. T Plots for C. F. Expansion of R Series ....... 72

XIII. Bibliography ...................................................................................................... 75

V ita ............................................................................................................... ....... .. 76

Ii



List of Figures

Figure Page
1. G eom etry of Lam bert's Theorem ................................................................... 1

2. Geometrical Significance of Lambert's Theorem .......................................... 2

3a. Time Residual vs. T, Ri Series, 5 Terms, 60 degrees .................................. 16

3b. Time Residual vs. T, RI Series, 15 Terms, 60 degrees ............................... 16

4a. Max Time Res vs. Theta, RI, T = -. 25 to .25 .............................. 17

4b. Max Time Res vs. Theta, RI, T = -. 50 to .50 ............................................. . 17

4c. Max Time Res vs. Theta, RI, T = -. 85 to .85 .............................. 18

5a. Time Residual vs. T, R Series, 5 Terms, 60 degrees .................................. 19

5b. Time Residual vs. T, R Series, 15 Terms, 60 degrees ................................ 19

6a. Max Time Res vs. Theta, R, T = -. 25 to .25 .............................................. 20

6b. Max Time Res vs. Theta, R, T = -. 50 to .50 .............................................. 20

7. Abs Value of Alpha vs. n, 60 degrees .......................................................... 21

8a. Abs Value of Coeff Res vs. n, 20 Terms, 60 degrees ................................ 22

8b. Abs Value of Coeff Res vs. n, 26 Terms, 60 degrees ................................ 22

9a. Abs Value of a Res vs. Neg T, 5 Terms, Deg 2-5 ..................................... 23

9b. Abs Value of a Res vs. Pos T, 5 Terms, Deg 2-5 ...................................... 24

9c. Abs Value of a Res vs. Neg T, 5 Terms, Deg 6-9 ..................................... 24

9d. Abs Value of a Res vs. Pos T, 5 Terms, Deg 6-9 ....................................... 25

10a. Abs Value of a Res vs. Neg T, 10 Terms, Deg 2-5 ................................... 25

10b. Abs Value of a Res vs. Pos T, 10 Terms, Deg 2-5 ..................................... 26

1Oc. Abs Value of a Res vs. Neg T, 10 Terms, Deg 6-9 ................................... 26

1Od. Abs Value of a Res vs. Pos T, 10 Terms, Deg 6-9 .................................... 27

SlIa. Abs Value of a Res vs. Neg T, 15 Terms, Deg 2-5 ................................... 27

11b. Abs Value of a Res vs. Pos T, 15 Terms, Deg 2-5 ..................................... 28
1 lc. Abs Value of a Res vs. Neg T, 15 Terms, Deg 6-9 .................................... 28

1 Id. Abs Value of a Res vs. Pos T, 15 Terms, Deg 6-9 .................................... 29

12a. Time Res vs. T, R Series, Method A, 5 Terms, 60 deg ............................. 30

12b. Time Res vs. T, R Series, Method A, 15 Terms, 60 deg .......................... 30

iv



13 .M xTmIe s h tR eh d A --2 o .5 ..............3
13a. Max Time Res vs. Theta, R, Method A, T = -.250 to .250..................... 31

14a. Alpha-I vs. Transfer Angle ......................................................... 32

14 .A11pa-2-vs Tas' r Angie......................................................... 33

14c. Alpha-3 vs. Transfer Angle ......................................................... 33

14d. Alpha-4 vs. Transfer Angle......................................................... 34

15. Coeff Residual vs. Theta for Alpha-I through Alpha-4....................... 34

16a. Time Res vs. T, R Series, Method B, 5 Terms, 60 deg .................... 3

16b. Time Res vs. T, R Series, Method B, 15 Terms, 60 deg ...................... 36

17a. Max Time Res vs. Theta, R, Method B, T = -.25 to .25 ...................... 36

17b. Max Time Res vs. Theta, R, Method B, T = -.50 to .50...................... 37

18a. Time Res vs. T, C.F. RI Series, 5th Cony, 60 deg.............................. 38

l8b. Time Res vs. T, C.F. RI Series, 10th Cony, 60 deg ............................ 39

19a. Max Time Res vs. Theta, C.F. RI, T = -.25 to .25............................. 39

19b. Max Time Res vs. Theta, C.F. RI, T = -.50 to .50............................. 40

19c. Max Time Res vs. Theta, C.F. RI, T = -.85 to .85............................. 40

20a. Time Res vs. T, C.F. R Series, 5th Cony, 60 deg .............................. 41

20b. Time Res vs. T, C.F. R Series, 10th Cony, 60 deg............................. 42

21a. Max Time Res vs. Theta, C.F. R, T = -.25 to .25.............................. 4221.MxTmIe s htCF ,T=-5 o 5 ................... 4
21c. Max Time Res vs. Theta, C.F. R, T = -. 5 to .85.............................. 43
22a. Max Tim Res vs. Theta, .F& R5Tm, T = -. 5 to .......................... 43

22b. Max T Res vs. Theta, R & RI, 15 Terms, T = -. 50 to .50.................... 44

23a. Max T Res vs. Theta, R AlR, 5 Terms, T = -. 5 to .50...................... 45U23b. Max T Res vs. Theta, R Alt, 15 Terms, T - -. 50 to .50...................... 45

24a. Max Tim Res vs. Theta, RI lt 1.F TRs, T = -. 5 to .5...................... 46

24b. Max Time Res vs. Theta, RI & C.F. RI, T - -.85 to .85...................... 47

25a. Max Time Res vs. Theta, RI & C.F. R, T = -. 5 to .5 ....................... 47

25b. Max Time Res vs. Theta, R & C.F. R, T - -.250 to .250....................... 48

26a. Max Time Res vs. Theta, CR & CFR, T - -. 5 to .5..................... 49

v



26b. Max Time Res vs. Theta, CFRI & CFR, T = -. 85 to .85 .......................... 50

27a. Max Time Res vs. Theta, CFRI & CFR, T = -. 25 to .25 .......................... 50

27b. Max Time Res vs. Theta, CFRI & CFR, T = -. 85 to .85 .......................... 51

28a. Time Residual vs. T, RI Series, 5 Terms, 150 degrees .............................. 54

28b. Time Residual vs. T, RI Series, 15 Terms, 150 degrees ............................ 54

29a. Time Residual vs. T, RI Series, 5 Terms, 240 degrees .............................. 55

29b. Time Residual vs. T, RI Series, 15 Terms, 240 degrees ............................ 55

30a. Time Residual vs. T, RI Series, 5 Terms, 330 degrees .............................. 56

30b. Time Residual vs. T, RI Series, 15 Terms, 330 degrees ............................ 56

31a. Time Residual vs. T, R Series, 5 Terms, 150 degrees ................................ 57

31b. Time Residual vs. T, R Series, 15 Terms, 150 degrees ............................. 57

32a. Time Residual vs. T, R Series, 5 Terms, 240 degrees ................................ 58

32b. Time Residual vs. T, R Series, 15 Terms, 240 degrees ............................. 58

33a. Time Residual vs. T, R Series, 5 Terms, 330 degrees ................................ 59

33b. Time Residual vs. T, R Series, 15 Terms, 330 degrees ............................. 59

34a. Time Res vs. T, R Series, Method A, 5 Terms, 150 deg ............................ 60

34b. Time Res vs. T, R Series, Method A, 15 Terms, 150 deg ......................... 60

35a. Time Res vs. T, R Series, Method A, 5 Terms, 240 deg ............................ 61
35b. Time Res vs. T, R Series, Method A, 15 Terms, 240 deg ......................... 61

36a. Time Res vs. T, R Series, Method A, 5 Terms, 330 deg ........................... 62

36b. Time Res vs. T, R Series, Method A, 15 Terms, 330 deg ......................... 62

37a. A lpha-5 vs. Transfer A ngle .......................................................................... 63

37b. A lpha-6 vs. Transfer Angle ......................................................................... 63

37c. A lpha-7 vs. Transfer A ngle .......................................................................... 64

37d. Alpha-8 vs. Transfer Angle ......................................................................... 64

38. Coeff Residual vs. Theta for Alpha-5 through Alpha-8 ............................ 65

39a. Time Res vs. T, R Series, Method B, 5 Terms, 150 deg ........................... 66

39b. Time Res vs. T, R Series, Method B, 15 Terms, 150 deg ......................... 66

40a. Time Res vs. T, R Series, Method B, 5 Terms, 240 deg ........................... 67

40b. Time Res vs. T, R Series, Method B, 15 Terms, 240 deg ......................... 67

vi

II
I!



41a. Time Res vs. T, R Series, Method B, 5 Ttrms, 330 deg ...................... 68

41b. Time Res vs. T, R Series, Method B, 15 Terms, 330 deg..................... 68

42a. Time Res vs. T, C.F. RI Series, 5th Cony, 150 deg ............................ 69

42b. Time Res vs. T, C.F. RI Series, 10th Cony, 150 deg........................... 69

43a. Time Res vs. T, C.F. RI Series, 5th Cony, 240 deg ............................ 70

43b. Time Res vs. T, C.F. RI Series, 10th Cony, 240 deg........................... 70

44a. Time Res vs. T, C.F. RI Series, 5th Cony, 330 deg ............................ 71

44b. Time Res vs. T, C.F. RI Series. 10th Cony, 330 deg........................... 71

45a. Time Res vs. T, C.F. R Series, 5th Cony, 150 deg............................. 72

45b. Time Res vs. T, C.F. R Series, 10th Cony, 150 deg ........................... 72

j46a. Time Res vs. T, C.F. R Series, 5th Cony, 240 deg............................. 73

46b. Time Res vs. T, C.F. R Series, 10th Cony, 240 deg ........................... 73

47a. Time Res vs. T, C.F. R Series, 5th Cony, 330 deg............................. 74

47b. Time Res vs. T, C.F. R Series, 10th Cony, 330 deg ........................... 74

vi



List of Tables

Table Page

1. RI Series Coefficients for a Transfer Angle of 60 deg ................................. 8

2. R Series Coefficients for a Transfer Angle of 60 deg ................................... 10

viii



I List of Symbols

Symbol Page

c ... chord ................................................................................................................. I

o ... transfer angle ................................................................................................... I

r ... radial distance to orbiting body ...................................................................... 2

t ... gravitational constant ...................................................................................... 2

a ... sem i-m ajor axis .............................................................................................. 2
St ... time .................................................................................................................... 2

s ... sem i-perimeter ............................................................................................... 2

T ... non-dimensional time param eter ................................................................... 3

t, ... parabolic transfer tim e ................................................................................ 3

A ... Lam bert's Tim e Function coefficients ....................................................... 3

B . .. RI series coefficients .................................................................................. 4

a ... R series coefficients ...................................................................................... 4
a,

O . a- ( ............................................ ............................................................ 9

Ia
*(k cx) " O(x) .................................................................................................... 9

Pk ... kth convergent of continued fraction expansion ......................................... 13

ix



AFIT/GA/ENY/90D- 14

Abstract

.... An expression for the semi-major axis as a function of time may be determined by

performing a series reversion and inversion of Lambert's Time Function. Since the

resulting series contains a singularity, it is desirable to perform only a reversion on the

original series to obtain an expression for the inverse of the semi-major axis. Using a

Lagrange expansion to obtain the coefficients for this series is very computer intensive.

Therefore, alternative methods are presented. Also, each series was expanded into a

continued fraction which provided greater accuracy than the series using the same num-

ber of coefficients. The accuracy was found to be dependent upon the number of series

coefficients used, the transfer time, and the transfer angle.
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A NUMERICAL INVESTIGATION OF THE SERIES REVERSION/INVERSION AND

SERIES REVERSION OF LAMBERT'S TIME FUNCTION

I. Introduction

One of the classic problems in orbital mechanics is the determination of orbital

parameters using two position vectors and the time of flight of a satellite. In 1761,

Lambert developed a theorem (later proved by Lagrange) which states the time to tra-

verse an elliptic arc (also true for any conic trajectory (2:1 )) is dependent only on the

semi-major axis, the perimeter of the triangle formed by the initial and final position

vectors, and the chord joining the initial and final points of the arc. The geometry is

shown in Figure 1. Throughout this research the radius vectors were held constant,

r, = r, - 1 au and the transfer angle was varied from 10 to 360 degrees.

r22

Figure 1. Geometry of Lambert's Theorem

The significance of Lambert's theorem can be seen in Figure 2. Consider the

elliptic arc joining the fixed points P and Q. According to Lambert's theorem the shape

of the transfer ellipse from P to Q may be altered without changing the time of flight

by moving the foci F and F" and keeping the semi-major axis constant. Therefore, the

focus F may be moved to F, and the focus F to F without changing the time of flight.



As the focus F is moved counterclockwise and the focus F" is moved clockwise, the

ellipse becomes very flat until the foci are at F2 and F2. The time of flight has not

changed and the orbit is now rectilinear. Thus, the time I may be computed by elemen-

tary methods.

I
Figure 2. Geometrical Significance of Lambert's Theorem (2:72)

To obtain Lambert's Time Function the energy equation for a two-body orbit may

be written as

Sdr )2 =(2_ 1) 1I dt ) r a

where r is the radial distance between the two bodies, .i is the gravitational constant, a is

the semi-major axis, and t is the time. Since

then QF,+PF,-r,+r, and QF,-PF,-c

PF 2 -s-c and QFz-s

where s - (r, + r 2 
+ c)/2. Integrating Eq (1) produces

I 1 fg rdr (2)fpL- /2r - r2 ... (a

* Employing the following change of variable:

I2
I
I



r - a( - coso)

Eq (2) may be written asI ~
1-/ j '(1-coso)do

I where

a=2sin-1 
s and P3=2sin- 

s Cy2a 2a

This produces

t- -[(a-sina)-(P-sin(3)] 
(3)

This is Lambert's Time Function for an elliptic trajectory with a transfer angle less than

n and a flight time less than the minimum energy transfer time. A minimum energy

transfer is an elliptical transfer where a = s/2 . It may also be shown for a transfer

angle greater than n Lambert's Time Function is given by

a 3

t -[(a- sina) (3- sinp)] (4)

This form of Lambert's Time Function is difficult to use since the transfer time is

often known and the semi-major axis is the parameter that needs to be determined.

Since the equation is transcendental in the semi-major axis root finding techniques are

employed in order to determine the semi-major axis. A method of expressing the semi-

major axis as a function of the transfer time is desired.

With the use of hypergeometric functions, Lambert's Time Function for an ellipti-

cal trajectory may be written as an infinite series:

T( ) l ( 1 -" (Ic) 
3

/
2

)( l)(f

IS 2

where
t J- i1 (9-c) 3 12 )

I 3



I

I is the parabolic transfer time. This is the flight time of an object traveling on a para-

bolic trajectory between two position vectors where the origin of the position vectors is

the focus of the parabola. Lambert's Time Function for a hyperbolic trajectory may also

be expressed as an infinite series identical to Eq (5) except in the sign of the argument,

* i.e., K-) ,and the series coefficients are identical.

A series reversion and inversion has been performed on Eq (5) in order to obtain

I the semi-major axis as a function of time (4:9-13):

I (?_)>BIT-I+BZTO+B3 T,+B 4 T2+... (6)I
The coefficients for this series, referred to as the RI series, are obtained using a numer-

ically efficient matrix formulation. One purpose of this research is to investigate the

accuracy of the RI series. Due to the existence of a singularity in the RI series at T - 0

it is desirable to perform only a series reversion on Eq (5) to obtain the inverse of the

semi-major axis as a function of time:I
2a -aT+aT2+aT3+a 4T4 ... (7)

This series will be referred to as the R series. Several methods of obtaining the coeffi-

cients for the R series are presented as well as the accuracy of each method.

I
I
I
I
I4
I
I



I

* II. Analytical Development

Measuring the Accuracy

The accuracy of each method was evaluated in the following manner: 1) For a

given geometry and transfer time a value for the semi-major axis was obtained using Eq

I (6) or (7) for a given number of terms; 2) The time was calculated from Eq (3) or (4)

using the value for semi-major axis obtained in step 1; 3) The absolute value of the

difference between the calculated time and the true time was then calculated. The value

obtained in step 3 is called the Time Residual and was employed as a measure of the

* accuracy of each method.

Calculating the RI Series Coefficients

To calculate the coefficients for the RI series, multiply Eq (6) by T to obtain:

UT-B,( s~ )-+B2(- T . (8)

Substituting the series solution for T given by Eq (5) into Eq (8) yields:

2a 2a 2a 2 2

I Now differentiate Eq (9) with respect to (-) to obtain:

I Evaluating Eq (10) at -0 yields:

iI2 A )2B+

s + A, -

Taking three more derivatives and evaluating each at -) 0 produces the following:

I
I5
I
I



I

I A 2 - ,4132

A3 - AB 2 +A2B 3

A4 - A 3 B 2 +2AA 2 B3 + A3B 4  (1)

Each successive derivative becomes increasingly more complex. Solving Equation setI(11) for the B, coefficients yields:

A,

AI A, - A 2

B 3  - A 31 2

A2A 4 - 3A A 2 A, + 2A 3

B 4 - A 2 (12)

Equation set (12) may be expressed in matrix form as:

0 0 0 0
A,

B, A 2  1 0 0 0 A 2

B , A I A~ I A3B4 2A2-AA 3  -2A 2  1 0 A4  =Q{A}) (13)

A1 Al A 31
B. . .0 A,,,II

A method of generating the Q matrix in Eq (13) has been discovered (4:12).

* Knowing the elements of the first two rows of the matrix all of the remaining elements

may be obtained using the following procedure:

I A2I

I. q,=- q 2 1 = q 22

-- 2. q,,=(q,.,q,- 2 ., .. q'q.j-. - ... q,,.,-), z>-1>2

3. q, = -A- (q,2, q,a... q,,)'(A 2 , A 3 ..... A,)>

4. B,., =(q,, .q. . q,,)'(A 2. A 3 . A.., A, 1)

I 6



I

I The first element of each row must be calculated last, since it is dependent upon all of

the other elements in that row. For example, to calculate B4 first form element q3

I q 3 3 =(q 21
, qII)*(q[ 2 ,q 2 2 )

then q 32

q 32  =(q 21
. q

.
j ) ' ( q jjq 2 I)

+ A2 ' I 1 A2  A4

then q 3

;

I
q 31 = - ({(q3 2,q33)'(A2, A3 )

_2A," , 2JAA ,
A, At At

Now that all of the elements of the third row are known, B 4 may be calculated by taking

the dot product shown in step 4. Each successive coefficient may be calculated by

repeating steps 2, 3, and 4. The first 26 coefficients for a transfer angle of 60 degrees

are listed in Table 1.

II
I

I

I

I



I TABLE 1: RI Series Coefficients for 0 - 600

n B,

3.476627109438971 E-00 I
2 5.601954800296930E-00 1

3 1.569332354004166E-00 1
4 -2.072127624535575E-002I5 1.341485080981992E-002
6 -9.59146917620452 1E-003
7 5.932190937546468E-003
8 -3.159031 868854800E-003

9 1.491664314059560E-003
10 -6.607117824078 135E-004
11I 3.008808653647832E-004
12 - 1 .524580592486835E-004I13 8.421050704976452E-005
14 -4.626845621302778E-005
15 2.360695540204460E-005
16 - I. 103113408618128E-005
17 4.94478075552251 5E-006I18 -2.408810757970059E-006
19 1.33533831 1037049E-006
20 - 1.4282095435191 88E-006
21 -2.160844815080054E-006I22 2.140513606718741 E-005
23 -1. .160819447250 10SE-004
24 6.927153735887259E-004
25 -3.255901276133955E-003

26 1.382574881426990E-002

*Calculating the RSeries Coefficients

The coefficients for the R series may be obtained by using the Lagrange expansion

Itheorem (1). Letting x - () , Eq (5) may be written in the form:
X - X0 +T (x) (14)

with -v, - 0 , where

I OX)= 12.. (15)

and the .A,, terms are the coefficients in Eq (5). Now x may be expressed as a power

series in T using the Lagrange expansion theorem with the coefficients given by

a, = Il d4' *(x)f

I 8



The following recursive algorithm was used to calculate the coefficients of Eq (7)

(3:212-215). Define

D' dk(x) for k=O, 1.....n- I
dx

and

A) dk4(x)
dxk

, (k)(Cx) . lO M0I x

The algorithm now becomes

(A) _ I k k' (4 1 ( )'A~"

D- nZ l k )D',-' J for k-I, 2. n -I

beginning with the initial values

0 A,

The coefficients can now be calculated:

Algebraically, the first five coefficients are

1 A2

A3  A2
a 3 --- + 2-

Al A

,4  AA A4,
A4 A5 A4 A A

As 6A 2 A4+3A2 A24 A
a.- 21 -+ 14- (16)

AA A' A9

I I 9

I9
I



Each successive coefficient becomes increasingly more complex. Table 2 lists the R

series coefficients for a transfer angle of 60 degrees.

TABLE 2: R Series Coefficients for 0 - 60

n a,

1 2.876351039445733
2 -4.634718652746828
3 6.169638843024049
4 -7.677730891005001
5 9.199104623157812
6 -10.731091604324702
7 12.266169580346382
8 -13.800785808657999
9 15.334487956965681
10 -16.867784047477109
I1 18.401065122700818
12 -19.934436495815678I 13 21.467864111717599
14 -23.001301593856162
15 24.534730221361581
16 -26.068150929596808
17 27.601569133880563
18 -29.134987387096338
19 30.668404962779338
20 -32.201822741326474
21 33.735279494304024
22 -35.269089203411149
23 36.804909127457499
24 -38.350692931914622
25 39.939922586593518
26 -41.694275534386783

Since the recursive algorithm used to calculate the R series coefficients is slow in

I terms of computer time a more efficient method is desirable. The algebraic form of the

coefficients were formulated into a matrix in order to determine whether a pattern

I existed such as for the RI series. Alternate methods of obtaining the R series

coefficients examined the behavior of the coefficients as functions of n and 0.

Additionally, each series was expressed as a continued fraction so that fewer coefficients

would be required in order to achieve the same accuracy as the series.

I
I
U 10

I
I



Matrix Method

Equation set (16) may be expressed in the following matrix form:

2 0 0 0 0 0

0 0 0 0 0

a 1.43 A

a 2  2A, 1 0 0 0 A2

A 4 5

a3 A§ 51 z  A 3
at 4  P (A2 5 A ,A
a s  A A -A2

14A2 3AA 3 -21A2 6A 2  1
0 AAI 0. A A. A .

0 

0 1

L 
A

Since the first row and the first column of P contain all zero elements, except the first

element, we can look at the submatrix P .

0 0 0 0

2A,

A A 0 0

A1 2
14A3 21A 2-3AA, 6A2  1

A,

The first column of the R matrix has the general form:

R, - J)"(2i) A',-'
R29- t

z (i+ 1)1 A z't

and the diagonal has the general form:

I!



/1A'

For i> 2, the element to the left of the diagonal element has the general form:

(i + 2)A 2

These were the only general terms that were ascertained. Further investigation may

reveal a pattern that would be beneficial in order to generate the entire matrix.

Approximating the R Series Coefficients

Two methods of approximating the R series coefficients were investigated. The

first method (Method A) involved obtaining the coefficients as a function of n. The

coefficients were plotted versus n for each transfer angle. A least squares analysis was

then employed to fit a polynomial expressing a, as a function of n to each curve. The

second method (Method B) involved obtaining the coefficients for the R series as a

function of the transfer angle. Each coefficient, a, through a,6, was plotted versus the

transfer angle. Once the plots were obtained, a least squares analysis was performed to

obtain a polynomial in the transfer angle for each a,,.

Continued Fraction Expansion

The final method examined involved expanding the series into a continued frac-

tion. This method was applied to both the R series and the RI series. A continued

fraction typically provides the same accuracy as the series but uses fewer coefficients.

The general form of a continued fraction is

a0
+  

- b, _ 0;. . .
t, + 6a a2

In general, the function

C IOx)- CIIX+ + ... (17)
COO + COI X + C02

X 2  
+ ...

may be expanded into the continued fraction

12



C Fo co0  c c 30 x c10 X 1
o+ C20X [ 0 0 1 0 . .C .. (18)

O 30

The coefficients c,, are computed recursively by the formula

k= - CI- 2 . 0  C- 2 .k. (19)

Cj- 1 .0  CI 1I.-

where I > 2.

The RI series may be written as

2a B(. . .+ ( T ) ( 2 0 )
s T

and the R series may be written as

- T f(T) (21)
2a

where

J(T) - CIO + c,, T +c1 T2 + ... (22)

For the RI series c,,=Bk.2 and for the R series cIk-a k.I for k-0. 1.2.

Eq (22) is of the form of Eq (17) where

COO- 1 and COk=0 for k= 1,2,3...

The coefficients for the continued fraction expansion may now be calculated using Eq

(19). If the continued fraction is terminated so that
P, C1 o czoT c 3oT coT

f "(T ) - o ; .. ... ( 2 3 )
Qk COO CIO C20 C k-1.0

then Pi is termed the kth convergent of the continued fraction. The convergents are

found using the following formula:

Pk a: P,,-1 + bkPk-2  (24)
Qk aQk-I+bkQk-Z

where

13



b-CIO, b,=ckOT k>I

and

IPo =
0 . P1 =b 1 , Qo-1, and Q,-1

Algebraically, the first four convergents are:

P 1  P 2  C o-- C 0

Q, Q2 clo-clT

0PC - C IC + (c 1 2c 1 )c T
Q3 C H'C12

P4- - 1 12 ) ( 2c 10C IC12+C 31 1c I 13)T (25)
Q4 (c 1 C,,c2 )+(CoC13 -c, 1 c 12 )T+(cl2 -c,,c 3 )T(2

I Equation set (25) shows the kth convergent requires up to the coefficient cI.k- .

This means for the RI series the coefficients up to B,. 1 are required and for the R series

the coeffi.ients up to akare required. The accuracy of the kth convergent was com-

pared to the accuracy of each series using k terms.
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II. Numerical Investigation

In this section all of the figures shown are for a transfer angle of 60 degrees. All

other transfer angles examined were similar and representative samples are shown in the

indicated appendix. To measure the accuracy, the non-dimensional time, T (defined in

Eq (5)), was varied from -. 95 to 1.00.

Accuracy of RI and R Series

Using the method described in the previous section, the accuracy of the RI and the

R series was evaluated.

Figures 3a and 3b show plots of the Time Residual versus T for a transfer angle of

60 degrees using 5 and 15 terms of the RI series. Plots for other transfer angles are in

Appendix A. Note the lack of a data point at T = 0 . This is due to the singularity

caused by the first term of the series. Five terms of the series provides good accuracy

for TI <_ .50 while 15 terms provides good accuracy over the interval TI -. 85. The

absolute value of the maximum Time Residual for transfer angles from 30 to 360

degrees is plotted in Figures 4a - 4c for %arious intervals of time. As ITI - 1 the maxi-

mum absolute value of the Time Residual increases for a constant number of terms.

ITherefore, as TI - 1 additional terms are required to maintain a specified degree of

accuracy. For IT! < .25 15 terms provides one to two orders of magnitude greater accu-

racy than 5 terms. For T I < .50 15 terms provides approximately three orders of magni-

tude greater accuracy than 5 terms. For ITI 1 .85 15 terms provides two to three orders

of magnitude greater accuracy than 5 terms up to about 240 degrees. Beyond 240

degrees there is only about one order of magnitude difference between 5 and 15 terms.

1

I1



1 OE-002 RI SERIES, 5 TERMS
THETA = 60 DEGREES

4.2E-017........... .............

-1.OE-002

-2.OE-002

-3.OE-002
wd

2-4.OE-002

P5O-0

-6.OE-002

-7.OE-002 - ,..

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

TIME (t/tp -1)

Figure 3a. Time Residual vs. T' for a Transfer Angle of 600 Using 5

Terms of the RI Series

2.5E-005 -RI SERIES. 15 TERMS
THETA = 60 DEGREES

1.6E-01 9 .... .....................

I -2.5E-005

<-5.GE-DOS

I (f)~-7. SE-005

3 -1. OE-004

- 1.3E-004

- 1.5E-004

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
T7IME (t/tp - 1)

Figure 3b. Time Residual vs. 7' for a Transfer Angle of 600 Using 15
* Terms of the RI Series
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I
I

R1 SERIES T -. 25 to .25

10"I
~5 TERMS

0

I "10'

I 15TERM

0 30 60 90 120 150 150 210 240 270 300 330 360
ANGLE (DEGREES)

Figure 4a. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the RI Series for T - - .25 to .25

10 -2 RI SERIES T - -.50 to .50

5 TERMS
10 "

I _'IL
210

0 30 60 90 120 150 180 210 240 270 300 330 360
ANGLE (DEGREES)

Figure 4b. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the RI Series for T --. 50 to .50
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I
I

10 -j RI SERIES T = -. 85 to .85 5 TERMS

I15 TERMS

X lo-3
I U

U')I M 10-

UX
10 3

ANGLE (DEGREES)

Figure 4c. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the RI Series for T -- .85 to .85

Plots of Time Residual versus T for a transfer angle of 60 degrees using 5 and 15
terms of the R series are shown in Figures 5a and 5b. Plots for other transfer angles are
in Appendix B. The accuracy of the R series behaves similarly to the RI series. How-
ever, 5 terms provides good accuracy for I T -< .25 which is a much smaller interval than
the RI series. Fifteen terms also provides good accuracy over a smaller interval than 15
terms of the RI series: 1TI 50- .. Figures 6a and 6b show plots of the absolute value of
the maximum Time Residual versus transfer angle for various time intervals. For
[T 1- .25 15 terms provides about four orders of magnitude greater accuracy than 5

terms. However, the R series is not as accurate as the RI series utilizing the same
number of terms and has a smaller interval of convergence.

I
I
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I
6.OE-001 R SERIES, 5 TERMS

THETA = 60 DEGREES

5.OE-001

4.OE-001

D0 3.OE-001
i,I.,

U,.-, 2.0E-001

1.0E-001 •
I OJ.OE+001

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
"TiME (t/tp - 1)

Figure 5a. Time Residual vs. T for a Transfer Angle of 60* Using 5
Terms of the R Series

1.5E-DO1 R SERIES, 15 TERMS
THETA = 60 DEGREES

1.3E-001

1.OE-001

7.5E-002

"' 5.OE-002

I, L. 2.5E-002 .

-6.9E-018

-2.5E-002

- 5.OE- 002 . . . , . . . . , . . . , . , . . . . I . . . . I . . . I

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
TIME (t/tp - 1)

Figure 5b. Time Residual vs. T for a Transfer Angle of 60" Using 15
Terms of the R Series

I

I
I



1 2 R SERIES T =-.25 to .25
5 TERMS

0

W 10-

:27- 10~

I 10-'

1 0

10 1 T I -

0 30 60 90 120 150 180 210 240 270 300 330 360

ANGLE (DEGREES)

Figure 6a. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the R Series for T - - .25 to .25

U P SERIES T -. 50 to .50
10

I10 -3= 15 TERMS

~ 0-

I 10-0

I ~~1 T____T____I____T_

Figure 6b. Maximum Absolute Value of the Time Residual vs. Trans-I fer Angle Using the R Series for T - -. 50 to .50
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Method A. R Series Coefficients as a Function of n

Figure 7 shows the absolute value of a. is approximately a linear function of n for

n - I to approximately n- 25. A least squares analysis was performed using 20 terms

and the first 26 terms for a transfer angle of 60 degrees in order to obtain a polynomial

equation. The residual shown in Figures 8a and 8b is the difference between the value

of a, calculated using the polynomial and the true value. In Figure 8a the polynomials

were calculated using the first 20 terms and in Figure 8b the polynomials were calcu-

lated using the first 26 terms. Using 20 terms resulted in slightly smaller residuals. In

order to reduce the residuals for the first few terms two polynomials were found. The

first polynomial was for n - 1 to n - m + 1 where m is the degree of the polynomial.

The second polynomial was for n-+rn 2 to n -20.

60.0 THETA = 60 DEGREES

50.0

3 40.0

,.30.0

V)

20.0

10.0

0.0 .
0 5 10 15 20 25 30

n

i Figure 7. Absolute Value of a, vs. n for a Transfer Angle of 60*
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0.175
THETA - 60 DEG 20 TERMS

0.150 t 1st DEGREE
00 6 2nd DEGREE

<QDDn 3rd DEGREE
0. 1 25  

A A4th DEGREE
V)I

I- 0.100
Z

0.075I i
0.050

0.025

0.000 iL, , "
0 5 10 15 20

n

Figure 8a. Absolute Value of the Coefficient Residual vs. n for a
Transfer Angle of 60 ° Using 20 Terms

0.200 THETA = 60 DEG 26 TERMS

0.175 1 1st DEGREE

- C 2nd DEGREE

0.150 GrDD3rd DEGREE
0 iAAAA 4th DEGREE

1 0.125

IzI 0. 100

0.075°0
V)M 0.050

0.025

I 0.000 1- -T--T--

0 T 10 15 20

Figure 8b. Absolute Value of the Coefficient Residual vs. n for a
Transfer Angle of 60" Using 26 Terms

I
To determine which degree of polynomial would provide the most accurate results,

the absolute value of the "% Residual" (defined as the difference between the semi-major

22
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axis calculated using the true coefficients and the value calculated using the polynomial

approximation) was plotted versus T. In order to plot the absolute value of the a

Residual on a logarithmic scale two plots were required: one for positive values of T

and the other for negative values of T. Polynomials of degree two through degree nine

were evaluated. Figures 9 - 11 show these plots using 5, 10, and 15 terms respectively.

0 -a3 THETA =50 DEG 5 TERMS
I NEGATIVE T

10 -4
10-

(I.2 10 -

Mn AAAAA 2nd DEGREE
< 10 " 0O" 3rd DEGREE

I r1 4th DEGREE

10 -,o . ± 5th DEGREE

10-12j,I 10 , ,_____ ,__ ,____ ,__ ,_,_____,_ ,__'

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
TIME (t/tp - 1)

5 Figure 9a. Absolute Value of the a Residual vs. Negative T for a
Transfer Angle of 60* Using 5 Terms with the Coefficients
Calculated Using Polynomials of Degree 2 - 5
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10 -3

10

-3,

< 10

Ln 1o0PSI1' THETA =60 DEG 5 TERMS

3s 10-

M AAAA2nd DEGREE
< 10 06603rd DEGREE

QLL 4th DEGREE
t0*** 5th DEGREE

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

TIME (t/tp - 1 )

Figure 9b. Absolute Value of the a Residual vs. Positive T for aI Transfer Angle of 60 *Using 5 Terms with the Coefficients
Calculated Using Polynomials of Degree 2 - 5

10 -3 Hr 0DE EMI 10-

10

10*

U 0

10 AAAA 6th DEGREE
0007th DEGREE
nnn 8th DEGREE:

10 t~tt# 9th DEGREEI 10-11

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
TIME (t/tp - 1)

Figure 9c. Absolute Value of the a Residual vs. Negative T for a
Transfer Angle of 60* Using 5 Terms with the Coefficients
Calculated Using Polynomials of Degree 6 - 9
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10 -
2

-  THETA 60 DEG 5 TERMSi POSITIVE T

10 -5.

10

v 10 --o
! in 1 AAAA6th DEGREE7th DEGREE

01771 8th DEGREE

10. t S9th DEGREE

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
TIME (t/tp - 1)

Figure 9d. Absolute Value of the a Residual vs. Positive T for a
Transfer Angle of 60" Using 5 Terms with the Coefficients
Calculated Using Polynomials of Degree 6 - 9

10 - 3 - ,. THETA ,= 60 DEG 10O TERMS

10
4

10-'

A 10-'

10

10AoAA2nd DEGREEI0 10 00. 3rd DEGREE111114th DEGREE

10 T a" 5th DEGREE

10-11.

10 "= , v . , -- -, I I I - I - I - I

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
TIME (t/tp - 1)

Figure 10a. Absolute Value of the a Residual vs. Negative T for a
Transfer Angle of 60" Using 10 Terms with the Coeffi-
cients Calculated Using Polynomials of Degree 2 - 5
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10 THE-'TA = 60 DEC 10 TERMS

~1-' 3 2nd DEGREE_-0-1-OMO 3rd DEGREE /J

E 4th DEGREE
7 1 -2.
.OD 5thDERE

10 -
Sio 2,

1-.

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
TIME (t/tp - 1)

Figure 10b. Absolute Value of the a Residual vs. Positive T for a
Transfer Angle of 60" Using 10 Terms with the Coeffi-
cients Calculated Using Polynomials of Degree 2 - 5

10 "  THETA - 60 DEG 10 TERMS

1!0"

10 -3

10 .

0
10-'"

$ 10 .

riArl 8th DEGREE

10-,o 41" 9th DEGREE

10 11

10 12

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
TIME (t/tp - 1)

Figure 10c. Absolute Value of the a Residual vs. Negative T for a
Transfer Angle of 60" Using 10 Terms with the Coeffi-
cients Calculated Using Polynomials of Degree 6 - 9

26



1 THETA = 60 DEC 10 TERMS3 POSITIVE T

10 AA-- AA 6th DEGREE
0 7th DEGREE

, C0000 8th DEGREE
t &_. 9th DEGREE

10 -

10--

10 -

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
TIME (t/tp - 1)

IFigure 10d. Absolute Value of the a Residual vs. Positive T for aI Transfer Angle of 60" Using 10 Terms with the Coeffi-
cients Calculated Using Polynomials of Degree 6 - 9

I
10 -  THETA = 50 DEG 15 TERMS1 10

10 -4

10
A2nd DEGREE t,\ 1)

Figur 10 bo lut Vau or the a\Rsiua v. ostie fr

4th10 DEGREE 6
10b -. DEGREE

10 -

10 -12 I I

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

TIME (t/tp - 1)

Figure 1 la. Absolute Value of the a Residual vs. Negative T for a
Transfer Angle of 60 Using 15 Terms with the Coeffi-
cients Calculated Using Polynomials of Degree 2 - 5
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THETA = 60 DEG 15 TERMS10 -2POSrTIVET
10

10

2 10-

c- i0-'
0

V) 10 - '
AA.A 2nd DEGREE

0 - 0.- 3rd DEGREE
QQ= 4th DEGREE

0 - 5th DEGREE

10 -11

10 -12 1 1 1 1 1 1 1 1 1 1 1_1_1_1__-I

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
TIME (t/tp - 1)

Figure llb. Absolute Value of the a Residual vs. Positive T for a
Transfer Angle of 60 ° Using 15 Terms with the Coeffi-
cients Calculated Using Polynomials of Degree 2 - 5

10 " THETA 60 DEG 15 TERMS
. NEGATIVE T

10-3

10 -4

(A10

10

-3 10-'

10' AAAA6th DEGREE10 =000 - 7th DEGREE
nnn 8th DEGREE

10 -. tIA 9th DEGREE

10-11

10 -121 1 , I I i I I I I I I I

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
TIME (t/tp - 1)

Figure lIc. Absolute Value of the a Residual vs. Negative T for a
Transfer Angle of 60" Using 15 Terms with the Coeffi-
cients Calculated Using Polynomials of Degree 6 - 9
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THETA = 60 DEG 15 TERMS

10 -2 POSITNE T

DI 10'
i w~10"

7tAA 6th DEGREE
10 0066 7th DEGREE

0 8th DEGREE
iE*2' 9th DEGREE

10 -, - - , I I I I I I . I I I 1 1 r I i

0.0:. 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00TnME (t/tp - 1 )

Figure lId. Absolute Value of the a Residual vs. Positive T for a
Transfer Angle of 60* Using 15 Terms with the Coeffi-
cients Calculated Using Polynomials of Degree 6 - 9

Figures 9 - 11 indicate the third degree polynomial is the most accurate approxi-

mation over the time interval T --. 95 to 1.00. Figures 10b and 10d show that at

approximately T - .80 all of the polynomials give poor results using 10 terms.

Checking the a Residual using 6, 8, 12, and 18 terms showed a similar spike at the same

value of T. Therefore, when using this method of approximating the R series coeffi-

cients only an odd number of terms should be used.

The accuracy of this approximation using the third order polynomial was analyzed

in the same manner as the true series. Figures 12a and 12b show the Time Residual

versus T for a transfer angle of 60 degrees. Plots for other transfer angles are in

Appendix C. The maximum absolute value of the Time Residual versus transfer angle

for 5 and 15 terms is shown in Figures 13a and 13b. For IT 1 .25 15 terms provided

two to four orders of magnitude greater accuracy than 5 terms. Recall that using the

true coefficients resulted in a nearly constant four orders of magnitude difference.
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6.OE-001 ~ R SERIES (METHODA5TEM

4.OE-DO1

< .0E-DO1

2.OE-00i

-2,8E-01 7... ....

-1 .OE-0O1

-2.OE-001 .....

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 75 1. 00
TIME (t/tp - 1)

Figure 12a. Time Residual vs. T for a Transfer Angle of 60* Using 5

Terms of the R Series, Method A

I1.5E-001 R SERIES (METHOD A). 15 TERMS
THETA =60 DEGREE S

1.3E-001

1.OE-001

S7.5E-002

S5.OE-002

wU
S2.5E-002

-6.9E-018 .............

3 -2.5E-002

-5.0E-002 - . . . . . . . .. . F . . . .

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

TIME (t/tp - 1)
Figure 12b. Time Residual vs. T for a Transfer Angle of 60* Using

15 Terms of the R Series, Method A
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10 R SERIES (METHOD A) T = -. 25 to .25

5 TERMS

10

X 10W
10 "4

10 -7

0 30 60 90 120 150 180 210 240 270 300 330 360
ANGLE (DEGREES)

Figure 13a. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the R Series, Method A, for
T--.25 to .25

I
1 R SERIES (METHOD A) T = -. 50 to .50

15 TERMS

[]M0 10 -3-_
-j-

i10

I

0 30 60 90 120 150 180 210 240 270 .300 330 350
,ANGLE (DEGREES)

Figure 13b. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the R Series, Method A, for
T--.50 to .50
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Method B: R Series Coefficients as a Function of Transfer Angle

Employing the least squares analysis an eighth order polynomial was found to best

fit the plot of a I versus transfer angle. Therefore, an eighth order polynomial was then

fit to the plots of the remaining 15 coefficients. The variance increased slightly with

each successive coefficient. Figures 14a - 14d display the plots for the first four coeffi-

cients. The plots for the fifth coefficient to the sixteenth are in Appendix D. The

3I Coefficient Residual (the absolute value of the difference between the true and the

approximate coefficient) versus transfer angle is plotted in Figure 15. Each curve has

nearly the same sinusoidal shape. The distance between adjacent curves decreases with

each successive coefficient. See Appendix D for a plot showing Coefficient Residual for

the fifth through the eighth coefficients.

4.00 ALPHA(1)4.00 8th ORDER

3.75

3.50

3.25

3.00|4
2.75
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2.25
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71.50 .. . .. . . . . . . .. . . . . . . . . .

0.00 1.05 2.09 3.14 4.19 5.24 6.28
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Figure 14a. a vs. Transfer Angle
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Figure 14b. a 2 vs. Transfer Angle
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Figure 14c. a, vs. Transfer Angle
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-5.00 ALPHA(4)
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Figure 14d. a4 vs. Transfer Angle

0 ALP HA( )14 ,AAA._P HA(2)
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Figure 15. Coefficient Residual vs. Transfer Angle for a, through a4

The accuracy of this approximation was analyzed as before. Figures 16a and 16b

show the Time Residual versus T for a transfer angle of 60 degrees. Plots for other
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transfer angles are in Appendix E. Figures 17a and 17b show the maximum absolute

value of the Time Residual versus transfer angle for 5 and 15 terms. The difference in

accuracy between 5 and 15 terms is not as great using this method as it is using the true

coefficients or Method A. For some transfer angles 5 terms is more accurate than 15.

I 6-OE-001R SERIES (METHOD 8), 5 TERMS
6.0E-01 THETA =60 DEGREES

I 5.07-001

4.0E-001

< 3.OE-001

'2.OE-001

-2.8E-017 ' . . ..........

I -1OE-001

-2.OE-001 .

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
TIME (t/tp - 1)

Figure 16a. Time Residual vs. T for a Transfer Angle of 60* Using 5
Terms of the R Series, Method B
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1.5E-001 R SERIES (METHOD 8), 15 TERMS

THETA = 60 DEGREES

1.3E-001

1 .E-001

I 7.5E-002
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Li
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TIME (t/tp - 1)

Figure 16b. Time Residual vs. T for a Transfer Angle of 60" Using
15 Terms of the R Series, Method B
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Figure 17a. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the R Series, Method B, for
T - - .25 to .25
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Figure 17b. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the R Series, Method B, for
T--.SO to .50

Continued Fraction Expansions

In the continued fraction expansion of the RI series the Pk and Q, terms quickly

5approached zero as k increased. The twelfth convergent was the highest that could be

calculated before a singularity was reached. The P, and Q, terms for the R series

I quickly increased as k increased. The highest convergent that could be calculated was
the eighteenth. Therefore, the fifth and tenth convergents were selected to compare

with the series using 5 and 15 terms for consistency.

Figures 18a and 18b show the plot of the Time Residual versus T for a transfer

angle of 60 degrees using the continued fraction expansion of the RI series. Plots for

other transfer angles are in Appendix F. The accuracy is much better for long elliptical

1 transfers (positive T) than the RI series itself. Figures 19a - 19c show the maximum
absolute value of the Time Residual versus transfer angle for the fifth and tenth conver-

I gents. Up to about 250 degrees there is very little difference between the accuracy of
the fifth and tenth convergents for I TI .25. However, for transfer angles greater than

I
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1 250 degrees the tenth convergent is one to two orders of magnitude better. For TI S .50
and IT[ - .85 the tenth convergent is more accurate than the fifth. However, for some

transfer angles the difference is very small especially over the interval IT 1- .85.

7.OE-002 CONTINUED FRACTION EXPANSION OF RI SERIES
5th CONVERGENT, THETA = 60 DEGREES
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Figure 18a. Time Residual vs. T for a Transfer Angle of 60* Using
the 5th Convergent of the C. F. Expansion of the RI Series
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2.3E-004 CONTINUED FRACTION EXPANSION OF RI SERIES
10th CONVERGENT, THETA =60 DECREES

2.DE-004

1 .SE-004

1.5E-004

S1.3E-004

S1.OE-004

ct 7.5E-005

S5.OE-005

2.5E-005

0.OE-+000 . . . . . . . . . . . . . . . . . .

-2.5E-005

-5.OE-005
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

TIME (t/tp - 1)

Figure 18b. Time Residual vs. T for a Transfer Angle of 6O* Using
the 10th Convergent of the C. F. Expansion of the RI
Series
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Figure 19a. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the C. F. Expansion of the RI Series for
T --. 25 to .25
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CONTINUED FRACT!ON EXPANSION OF RI SERIES
10-1. T = -. 50 to .50
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ANGLE (DEGREES)

Figure 19b. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the C. F. Expansion of the RI Series forT--.50 to .50
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Figure 19c. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the C. F. Expansion of the RI Series for
T--.85 to .85
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Figures 20a and 20b show the plots of the Time Residual versus T for a transfer

angle of 60 degrees using the fifth and tenth convergents of the continued fraction

expansion of the R series. Plots for other transfer angles are in Appendix G. The tenth

convergent provides good accuracy for long elliptical transfers while the accuracy of the

fifth convergent begins to fall off at approximately T - .6. Figures 21a - 21c show the

maximum absolute value of the Time Residual versus transfer angle for the fifth and

tenth convergents. For TI .25 and IT 1 .50 the tenth convergent provides one to two

orders of magnitude greater accuracy in most cases. However, for transfer angles less

than or equal to 30 degrees there is very little difference over the interval IT[ -. 25. For

I Ti -< .85 the accuracy of the tenth convergent is two to three orders of magnitude better

for transfer angles less than 90 degrees. At about 230 degrees the fifth convergent is

actually more accurate than the tenth.

5.OE-003 CONTINUED FRACTION EXPANSION OF R SERIES
5th CONVERGENT, THETA - 60 DEGREES

2.8E-017 - .................... ....

-5.OE-003

-1.OE-002

{:-1.5E-002

Li
_ .OE:OO2

-2.5E-002

-3.OE--002

-3.5E-002

-4.0E-002 . . . . . . . . T . . . i . . I. . . . L. . . TT

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
TIME (t/tp - 1)

Figure 20a. Time Residual vs. T for a Transfer Angle of 60* Using
the th Convergent of the C. F. Expansion of the R Series
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3.OE-004 CONTINUED FRACT10N EXPANSION OF R SERIES
10,th CONVERGENT. THETA =60 DEGREES
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Figure 20b. Time Residual vs. T for a Transfer Angle of 60* UsingI the 10th Convergent of the C. F. Expansion of the RSeries

CONTINUED FRACTION EXPANSION OF R SERIES
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Figure 21a. Maximum Absolute Value of the Time Residual vs. Trans-I fer Angle Using the C. F. Expansion of the R Series for
T--.25 to .25
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I CONTINUED FRACTION EXPANSION OF R SERIES
102 T = -. 50 to .50
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Figure 21b. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the C. F. Expansion of the R Series for
T--.50 to .50
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Figure 21c. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the C. F. Expansion of the R Series for
T--.85 to .85
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I Comparison of Methods

The RI series is more accurate than the R series by two to three orders of magni-

tude when using the same number of terms as shown by the plots in Figures 22a and

22b. The R series requires many more terms be used in order to obtain the same

I accuracy as the RI series.

10 5 TERMS T = -. 25 to .25

R SERIES

S10 _ _ _ _ _ _ _ _ _ _ _ _ _

._J
10

I 10 RI SERIES

I 10 --I,0
I _- _ _ _ __i_ _ _ _ _ _ _ _ _ _ _ _ _ __I_ __II _ _ i i] Ii

I
i I I

0 30 60 90 120 150 180 210 240 270 300 330 3560
ANGLE (DEGREES)

Figure 22a. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using 5 Terms of the R Series and the RI Series
for T-- .25 to .25

Using the alternate methods to calculate the R series coefficients did not introduce

a large amount of error when 5 terms were used. The accuracy of Method A was nearly

identical to the accuracy when the true coefficients were used. This is shown in Figure

23a. The accuracy of the alternate methods deteriorated when more terms of the series

were used as shown in Figure 23b.
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10 -  15 TERMS T = -. 50 to .50
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0 30 60 90 120 150 180 210 240 270 300 330 360
ANGLE (DEGREES)

Figure 22b. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using 15 Terms of the R Series and the RI
Series for T - -. 50 to .50
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Figure 23a. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using 5 Terms of the R Series With the True
Coefficients, Method A, and Method B for

T--.2S to .2S
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15 TERMS T = -. 50 to .50
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Figure 23b. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using 15 Terms of the R Series With the True
Coefficients, Method A, and Method B for
T--.50 to .50

Figure 24a shows that the fifth convergent of the continued fraction expansion of

the RI series is more accurate than using 5 terms of t-e series for transfer angles less

than 260 degrees. From 260 to 360 degrees the accuracy of each is approximately equal.

Figure 24b illustrates the efficiency of the continued fraction expansion. The tenth

convergent requires eleven coefficients and provides nearly the same accuracy as 15

terms of the RI series.

I
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T= -. 85 to .85
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Figure 24a. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using 5 Terms of the RI Series and the 5th
Convergent of the C. F. Expansion of the RI Series for
T--.85 to .85I

I 10 -z. T = -. 85 to .85

~10

0

UI i0 21

10 ci: RI SERIES, 15 TERMS
AA CONTINUED FRACTION EXPANSION

, RI SERIES. 10th CONVERGENT
10 . .I

0 30 60 90 120 150 180 210 240 270 300 330 360
ANGLE (DEGREES)

I Figure 24b. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using 15 Terms of the RI Series and the 10th
Convergent of the C. F. Expansion of the RI Series for
T--.85 to .85
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The continued fraction expansion of the R series provided approximately three

orders of magnitude greater accuracy than the R series using five coefficients for each.

This is shown in Figure 25a. Figure 25b indicates the continued fraction expansion still

provides approximately three orders of magnitude greater accuracy with the tenth con-

vergent compared to 15 terms of the series.

o- 2  T f -. 25 to .25

R SERIES, 5 TERMS
-1 -

10

M- 1 CONTINUE0 FRACTION EXPANSION
<0 -  OF R SERIES, 5th CONVERGENT

10 .

~~~~~1 0 -7 1 1 1 1 I I I '

0 30 60 90 120 150 180 210 240 270 300 330 360
ANGLE (DEGREES)

I Figure 25a. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using 5 Terms of the R Series and the 5th
Convergent of the C. F. Expansion of the R Series for
T--.25 to .25

Using the continued fraction expansion, the R series approached the accuracy of

the RI series. For the fifth convergent, the accuracy of the R series is nearly identical

to the RI series for transfer angles greater than 250 degrees. Below 250 degrees the RI

series is still approximately an order of magnitude more accurate. This is shown in

Figures 26a and 26b for two time intervals. When the tenth convergent is used, the

accuracy of the two series is nearly identical for T - - .85 to .85 and is identical for

T -- .25 to .25 as shown in Figures 27a and 27b.

48

1



I
10- T --. 50 to .50
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Figure 25b. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using 15 Terms of the R Series and the 10th
Convergent of the C. F. Expansion of the R Series for
T--.50 to .50I

CONTINUED FRACTION EXPANSIONS, 5th CONVERGENT
T - -. 25 to .25I 10.

_J

II 10 -

~i01 RI SERIES

I
10 ,T T I T I I 

I  
I I T T l 

T  
T T T T 

'
T I

0 30 60 90 120 150 180 210 240 270 300 330 360
ANGLE (DEGREES)

Figure 26a. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the 5th Convergent of the C. F. Expan-
sions of the R and the RI Series for T - - .25 to .25
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I CONTINUED FRACTION EXPANSIONS, 5th CONVERGENT
T =-.85 to .85
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Figure 26b. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the 5th Convergent of the C. F. Expan-
sions of the R and the RI Series for T - - .8S to .85
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Figure 27a. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the 10th Convergent of the C. F. Expan-
sions of the R and the RI Series for T - - .25 to .25
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CONTINUED FRACTION EXPANSIONS, 10th CONVERGENT
10-11 T - -. 85 to .85
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Figure 27b. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using the 10th Convergent of the C. F. Expan-
sions of the R and the RI Series for T - - .85 to .85
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* IV. Conclusions

Performing a series reversion on Eq (5) avoids the singularity in the RI series.

However, the R series is not as accurate as the RI series with the same number of terms.

Another disadvantage of the R series involves calculating the coefficients which is very

I computer intensive.

Alternate methods of calculating the R series coefficients using polynomial approx-

imations were found to be nearly as accurate as the true R series coefficients. However,

* these methods are empirical and do not provide any advantage.

Expanding each series into a continued fraction provided the most accurate method

of calculating the semi-major axis. The continued fraction expansions were most not-

ably more accurate than each series for long elliptical transfers approaching the mini-

mum energy transfer time. The R series continued fraction expansion was as accurate as

the RI series continued fraction expansion with the benefit of no singularities. For a

specified degree of accuracy the continued fraction expansion is more advantageous than

the series because fewer series coefficients are required.

The accuracy of each of the methods presented was dependent upon the number of

series terms or the order of the convergent, the transfer time, and especially the transfer

angle. The best accuracy obtained in this study was a Time Residual on the order of

10-7. For a given number of terms or convergent this varied by as much as several

orders of magnitude depending upon the transfer time and transfer angle. The largest

reduction in accuracy usually occurred for transfer angles between 270 and 350 degrees.

As T approached the limit for which the number of terms or convergent was able to

provide good results the accuracy was very sensitive to the transfer angle. For transfer

times well within the limit the accuracy did not vary by more than one order of magni-

tude.

I



V. Recommendations for Further Study

During the course of this research the radius vectors were held constant while the

transfer angle was varied. Further analysis of the accuracy may be accomplished while

varying the radius vectors and the transfer angle. Also, further analysis of the accuracy

may reveal the optimum number of terms to use.

In order to take full advantage of the R series, a more efficient method of obtain-

ing the coefficients must be found. Further investigation of the R matrix may reveal a

pattern that would be beneficial in order to generate the entire matrix.

While the continued fraction expansion may appear to be an attractive method of

calculating the semi-major axis it has the disadvantage of being computer intensive.

Therefore, it may be desirable to approximate the continued fraction using a Chebyshev

polynomial.

I 53



l

I Appendix A. Time Residual vs. T Plots for RI Series
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Figure 28a. Time Residual vs. T for a Transfer Angle of 150* Using
i 5 Terms of the RI Series
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Figure 28b. Time Residual vs. T for a Transfer Angle of 150* Using
15 Terms of the RI Series
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5.OE-003RI SERIES, 5 TERMS
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Figure 29a. Time Residual vs. T for a Transfer Angle of 240* Using
5 Terms of the RI Series
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Figure 29b. Time Residual vs. T for a Transfer Angle of 240* Using
15 Terms of the RI Series

55



2.5E-002 -RI SERIES, 5 TERMS
THETA = 330 DEGREES
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Figure 30a. Time Residual vs. 7" for a Transfer Angle of 3300 Using
5 Terms of the RI Series
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Figure 30b. Time Residual vs. T for a Transfer Angle of 3300 Using
I15 Terms of the RI Series
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Appendix B. Time Residual vs. T Plots for R Series
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Figure 31a. Time Residual vs. T for a Transfer Angle of 150* Using
5 5Terms of the RSeries
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Figure 31b. Time Residual vs. T for a Transfer Angle of 1500 Using
15 Terms of the R Series
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U5.0E-001 R SERIES, 5 TERMS
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Figure 32a. Time Residual vs. T for a Transfer Angle of 2400 Using
5 5Terms of the RSeries
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Figure 32b. Time Residual vs. T for a Transfer Angle of 240* Using
15 Terms of the R Series
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Figure 33a. Time Residual vs. T for a Transfer Angle of 330* Using
5 Terms of the R Series
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Figure 33b. Time Residual vs. T for a Transfer Angle of 330* Using
15 Terms of the R Series
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Appendix C. Time Residuci vs. T Plots for Method A
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Figure 34a. Time Residual vs. T for a Transfer Angle of 150* Using
5 Terms of the R Series, Method A
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IFigure 34b. Time Residual vs. T for a Transfer Angle of ISO* Using
15 Terms of the R Series, Method A
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2(METHODR A, TERMS
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I 2.OE-001
LdJ

wa 1.OE-001

-2.8E-017 ...

-1 .OE-001

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
TIME (t/tp - 1)

Figure 35a. Time Residual vs. T for a Transfer Angle of 240 ° Using
1 5 Terms of the R Series, Method A

4.5E-001 R SERIES (METHOD A). 15 TERMS

4OE--- THETA - 240 DEGREE
4.0E-001

3.5E-001

3.OE-001

2.5E-001

I u 2.OE-001
Law- 1.5E-001

h 1.OE-001

I 5.OE-002 "
-1.4E-017 - ............................

-5.OE-002

-1.OE-001 I T I I I I .

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
TIME (t/tp - 1)

Figure 35b. Time Residual vs. T for a Transfer Angle of 2400 Using
15 Terms of the R Series, Method A
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I2.OE-001 R SERIES (METHOD A), 5 TERMS
THETA =33D DEGREES

1.8E-001

1.5E-001

1.3E-001

S1.OE-0O1

IJ 7.5E-002

M-5.OE-002

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0 .75 1.00

TIME (t/tp - 1)

Figure 36a. Time Residual vs. T for a Transfer Angle of 33O* Using
5 Terms of the R Series, Method A

1.2E-001 R SERIES (METHOD A), 15 TERMS
THETA 330DEGREES

1 .OE-DO1

I 8.O1E-002

:6.OE-D02
0I tIJ 4-0E-002

2. OE-002

6-9E-018.........o...

-2.OE-002

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

TIME (t/tp - 1)

Figure 36b. Time Residual vs. T for a Transfer Angle of 330* Using
15 Terms of the R Series, Method A
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Appendix D. Plots of a vs. Transfer Angle

*18.00 ALPHA(5)

* 16.00
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Figure 37a. a 5 vs. Transfer Angle

-5.00- ALPHA( 6)
8th ORDER

-7.50

-10.00

<-12.50

I <-15.00

-17.50

-20.00
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I Figure 37b. a6 vs. Transfer Angle
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3 Figure 37c. a7 vs. Transfer Angle
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Figure 37d. a8 vs. Transfer Angle
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COEFFICIENT RESIDUALS
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I z
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0.00 1.05 2.09 3.14 4.19 5.24 6.28
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Figure 38. Coefficient Residual vs. Transfer Angle for a5 through a,,
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I Appendix E. Time Residual vs. T Plots for Method B

4.OE-001 R SERIES (METHOD B). 5 TERMS

THETA = 150 DEGREES
3.5E-001

3.OE-001

2.5E-001

S2.0E-001

I-1.5E-001 7
i 1.OE-O01

5.OE-002

. o4E017 ........ .

-5.0E-002

- 1.O E- 00 1 . . . .. . . . . . . . .. , , ' I , , I . . I . .

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
TIME (t/tp - 1)

Figure 39a. Time Residual vs. T for a Transfer Angle of 1500 Using
5 Terms of the R Series, Method B

3.5E-001 R SERIES (METHOD B). 15 TERMS

3E-001 THETA 150 DEGREES

2.5E-001

2.OE-001

1.5E-001I °1.OE-001
5.0E-002 .
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-I.OE-001 . . 1 ... . . I . , ...I .... I

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
TIME (t/tp - i)

Figure 39b. Time Residual vs. T for a Transfer Angle of 150" Using
15 Terms of the R Series, Method B
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5.OE-001 R SERIES (EHO 5 TERM S
THETA = 40FDEGRET5I 4.0E-00 1

3.OE-001

I n 2.OE-OO1

LAj iGE-OCI

-2.8E-01 7 *****

I -1 .OE-001

-2.OE-0O1 I. . . . . . . . . . . .I-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75.. 1'.0
TIME (t/tp - 1)

Figure 4 0a. Time Residual vs. T for a Transfer Angle of 240* UsingI 5 Terms of the R Series, Method B

I5.OE-001 R SERIES (METHOD B), 15 TERMS
4.5E001THETA =240 DEGREES

4.5E-001

4.OE-0O1

Dg3.5E-001

W. 3.OE-001

1 .5E-001

5.OE-002

-1.4E-017 .....
-5.OE-002

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00I TIME (t/tp -1)

Figure 40b. Time Residual vs. T for a Transfer Angle of 240* Using
15 Terms of the R Series, Method B
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SERIES (METHOD B). 5 TERMS
2.OE-001 - THETA =330 DEGREES•

1.8E-001

1.5E-0O01

1.3E-001

1.OE-O01

UJ 7.5E-002
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-6.9E-0 8. ... ...

-2.5E-002
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-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

TIME (t/tp - 1)

Figure 41a. Time Residual vs. T for a Transfer Angle of 330* Using
5 Terms of the R Series, Method B

1.2E-001 R SERIES (METHOD 8). 15 TERMS

THETA = 330 DEGREES
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"' 4.0E-002
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-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
TIME (t/tp - 1)

Figure 41b. Time Residual vs. T for a Transfer Angle of 330* Using
15 Terms of the R Series, Method B
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Appendix F. Time Residual vs. T Plots for C. F. Expansion of RI Series

5.0E-003 CONTINUED FRACTION EXPANSION OF RI SERIES
5th CONVERGENT, THETA = 150 DEGREES

2.1E-D17 ....... ... .. .. .. ... . . ...

-5.0E-O03

9 -1.0E-O02

o -1.5E-002(A
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-2.5E-002

-3.OE-002 . .... ..... .. ......

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
TIME (t/tp - 1)

Figure 42a. Time Residual vs. T for a Transfer Angle of IS0* Using
the 5th Convergent of the C. F. Expansion of the RI Series

2.OE-004 CONTINUED FRACTION EXPANSION OF RI SERIES
10th CONVERGENT, THETA = 150 DEGREES

1.IE-018 ., ............... .... .............

I -2.QE-D04

" -4.OE-004V)
W -6.OE-004
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-8.OE-004

I -1.OE-003

-1.2E-003

-1.4E-003 .. ....... .
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

TIME (t/tp - 1)

Figure 42b. Time Residual vs. T for a Transfer Angle of 150* Using
the 10th Convergent of the C. F. Expansion of the RI
Series
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1 1.5E-D02 CONTINUED FRACTION EXPANSION OF RI SERIES
5th COINERGENT. THETA -240 DEGREES3 1.3E-002

1 .OE-002

S7.5E-003
0)I 5.OL-003

8.7E-D19..................

-2.5E-003

-5.OE-003 ......

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

TIME (t/tp -1)

Figure 43&. Time Residual vs. T for a Transfer Angle of 2400 Using
the 5th Convergent of the C. F. Expansion of the RI Series

1.OE-003 - CONTINUED FRACT10N EXPANSION OF RI SERIES

10th CONVERGENT, THETA = 240 DEG-REES
-5.2E-018 - ............................I -1.GE-003

-2.OE-003

S-. OE-003

-6.OE-0033 -7.OE-0D3

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 O.7 1.00
IME (t/tp -1)

Figure 43b. Time Residual vs. T for a Transfer Angle of 24O* Using
the 10th Convergent of the C. F. Expansion of the RI
Series
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5.OE-D02 CONTINUED FRACTION EXPANSION OF RI SERIES

5th CONVERGENT, THETA - .330 DEGREES
2.5E-002

... .. .. .. .. .. .. ..I -2.5E-002
< -5.0--002

n -7,5E-002
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-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

TIME (t/tp - 1)

Figure 44a. Time Residual vs. T for a Transfer Angle of 330 Using3 the 5th Convergent of the C. F. Expansion of the RI Series

2.5E-003 - CON'T1NUED FRACTION EXPANSION OF RI SERIES

10th CONVERGENT, THETA = 330 DEGREES
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-5.OE-0D3

- 7.5F-003
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-2-GE-002

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

TIME (t/tp - 1

Figure 44b. Time Residual vs. T for a Transfer Angl of 330* Using
the 10th Convergent of the C. F. Expansion of the RI

Series
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Appendix G. Time Residual vs. T Plots for C. F. Expansion of R Series

5.0E-003 CONTINUED FRACTION EXPANSION OF R SERIES

5th CONVERGENT. THETA = 150 DEGREES
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-4.OE-002 I I T
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TIME (t/tp - 1)

Figure 45a. Time Residual vs. T for a Transfer Angle of 150" Using
the 5th Convergent of the C. F. Expansion of the R Series

2.5E-004 CONTINUED FRACTION EXPANSION OF R 'SERIES
10th CONVERGENT, THETA = 150 DEGRLES
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-1F00 -75 -0.50 -025 0.00 0.25 0.50 0.75 1.00I TIME (t/tp - 1)

Figure 45b. Time Residual vs. T" for a Transfer Angle of 1500 Using
the 10th Convergent of the C. F. Expansion of the R
Series
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2.5E-003 CONTINUED FRACTION EXPANSION OF R SERIES
5th CONVERGENT, THETA =240 DEGREES31.7E-017 .... ....
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TIME (t/tp - 1)

Figure 46a. Time Residual vs. T for a Transfer Angle of 2400 UsingI the 5th Convergent of the C. F. Expansion of the R Series

2.5E-003 CON TINUED FRACTION EXPANSION OF R SERIES
10th CONVERGENT, THETA - 240 DEGREES

1.7E-01 7 ........................ .
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I= - 1.5E-002

I iE-00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

TIEI/p 1
Figure 46b. Time Residual vs. T for a Transfer Angle of 2400 Using

the 10th Convergent of the C. F. Expansion of the R
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I2.5E-D02 CONTINUED FRACTION EXPANSION Or R SERIES
5th CONVAERGENT, THETA =330 DEGREES

1-1E-016 ................. .
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TIME (t/tp -1)

Figure 47a. Time Residual vs. T for a Transfer Angle of 330' Using
the 5th Convergent of the C. F. Expansion of the R Series
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TIME (t/tp -1)

Figure 47b. Time Residual vs. T for a Transfer Angle of 3300 Using
the 10th Convergent of the C. F. Expansion of the R

Series
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